APPLICATION NOTE

A wideband power amplifier (25 - 110 MHz) with the MOS transistor BLF245
 NCO8602

A wideband power amplifier (25 - 110 MHz)
 Application Note with the MOS transistor BLF245

CONTENTS

1	SUMMARY
2	INTRODUCTION
3	DESIGN OF THE AMPLIFIER
3.1	General remarks
3.2	Output circuit
3.3	Input circuit
4	MEASURED PERFORMANCE
4.1	Constant input power
4.2	Constant output power
4.3	Constant frequency
4.4	Stability
4.5	Mismatch
5	CONCLUSIONS
6	REFERENCES
7	APPENDIX

A wideband power amplifier ($25-110 \mathrm{MHz}$) with the MOS transistor BLF245 NCO8602

1 SUMMARY

For military communication purposes a wideband class-AB power amplifier has been designed around the BLF 245 with the frequency range 25 to 110 MHz .

The DC-setting is $\mathrm{V}_{\mathrm{D}}=28 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}$.
In the input and output matching networks asymmetrical 1:4 transformers on 4C6 ferrite core material have been applied.

Table 1 The main properties are:

		UNIT
gain at P_{O}	17.7 ± 0.5	dB
bandwidth	$25-110$	MHz
V_{D}	28	V
I_{DQ}	200	mA
efficiency	$55-67$	$\%$
input VSWR	≤ 1.6	

2 INTRODUCTION

The BLF245 is an RF power MOS transistor for the VHF frequency range in a SOT123 encapsulation.
For application in military communication equipment a wideband power amplifier has been developed with a frequency range from 25 to 110 MHz . The transistor operates in class -AB at $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$ and a quiescent current $\mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}$. The useful output power is in the range of $25-30 \mathrm{~W}$.

3 DESIGN OF THE AMPLIFIER

3.1 General remarks

The amplifier has been developed with 1:4 impedance transformers in the input as well as in the output circuit. These transformers of the transmission line type with a ferrite core transform the 50Ω system impedance at the input and output to about 12.5Ω. An LC compensation circuit has been applied to transform this 12.5Ω to the optimum load impedance of the transistor. At the input a circuit matches the 12.5Ω to the gate impedance of the transistor and also takes care of a flat gain over the whole bandwidth.

3.2 Output circuit

For an optimum alignment of the output circuit the transistor has been replaced by a dummy. This dummy consists of a resistor of 12Ω parallel with a capacitor of 82 pF . The real part of the dummy has been determined by the available drain voltage and the required output power.
$R_{L}=\frac{V_{D}^{2}}{2 P_{O}} \rightarrow R_{L}=\frac{28^{2}}{2.30}=13.1 \Omega$
This is near to the value of 12.5Ω mentioned in Section 3.1. The capacitor is about 15% higher than the output capacitance of the transistor. The RF choke at the drain side must have a sufficient high reactance at the lower end of the frequency range. Choosing this reactance appr. a factor 5 higher than the transistor loadresistance we get an inductance of 455 nH for L_{4}.
The output capacitance of the transistor can be compensated according to the Appendix. The result is: $\mathrm{L}_{6}=18.6 \mathrm{nH}$ and $\mathrm{C}_{11}=82 \mathrm{pF}$. To transform the achieved 12.5Ω to the 50Ω system impedance an asymmetrical $1: 4$ transformer has

A wideband power amplifier ($25-110 \mathrm{MHz}$) with the MOS transistor BLF245

Application Note

NCO8602
been used. Information about this kind of transformation can be found in Refs 1 and 2. For the transformer a toroid of 4C6 material has been used. Dimensions: $23 \times 14 \times 7 \mathrm{~mm}$. On this toroid 5 turns of two 0.7 mm twisted enamelled Cu -wires are uniformly distributed and connected as shown in Fig.1.

Fig. 1 Output transformer.

With the aid of a network analyser the transformer has been corrected for higher frequencies. With $\mathrm{C}_{\mathrm{l}}=68 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{h}}=12 \mathrm{pF}$ the return losses in the range $20-140 \mathrm{MHz}$ are better than -30 dB (VSWR <1.07). Optimization of the complete output circuit has been carried out by measuring the return losses at the output with the network analyser under swept condition (see Fig.2).

Fig. 2 Output circuit before optimization.

A wideband power amplifier ($25-110 \mathrm{MHz}$) with the MOS transistor BLF245

Figure 4 shows the return losses of the output circuit before and after practical optimization. By decreasing L_{6} to 10 nH and C_{12} to 43 pF the return losses improved about 10 dB in the frequency range 20 to 140 MHz to -20 dB (VSWR = 1.22).

3.3 Input circuit

As mentioned in Section 3.1 a special circuit matches the input impedance of the transistor to 12.5Ω and also takes care of a sufficient flat gain over the whole bandwidth. To determine the gate-source impedance and the gain of the transistor in combination with the output circuit described in Section 3.2, narrow band input circuits have been used at several frequencies. By tuning such an auxiliary input circuit the gain of the transistor in combination with the output circuit can be measured directly. In case the input circuit has been tuned the output impedance of this circuit is the conjugate complex of the input impedance of the transistor.

Figs 5 to 7 give the input impedance and the gain of the transistor in combination with the output circuit. The matching network chosen at the input of the transistor is depicted in Fig.3.

Fig. 3 Input matching circuit.
C_{i} represents the input capacitance of the BLF245 which is appr. 220 pF (see Fig.6). Across this capacitor a constant voltage versus frequency from 25 up to 110 MHz has to be developed. Provided Ci is an ideal capacitance the optimum dimensioning of this network is as follows:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{1}=1.6 /\left(\omega_{\mathrm{c}} \times \mathrm{C}_{\mathrm{i}}\right)=10.5 \Omega \\
& \mathrm{C}_{2}=\mathrm{C}_{5}=0.386 \mathrm{C}_{\mathrm{i}}=85 \mathrm{pF} \\
& \mathrm{~L}_{2}=\mathrm{L}_{3}=0.997 \mathrm{R}_{1} / \omega_{\mathrm{c}}=15.1 \mathrm{nH} .
\end{aligned}
$$

in which ω_{c} is the maximum angular frequency. The calculated voltage variation across C_{i} is $\pm 0.36 \mathrm{~dB}$ and the maximum VSWR seen by the generator is 1.36 . Deviating from this calculation, for the ease of transformation, R_{G} and R_{1} have been chosen 12.5Ω. Further the resistive component of C_{i} is substantial especially at higher frequencies.
Therefore the values of the components have been changed in a computer optimization program for a maximally flat gain and a low input VSWR. This optimization results in a gain of 17.5 dB with a variation of $\pm 0.17 \mathrm{~dB}$ and a maximum $\mathrm{VSWR}=1.177$. These results have been achieved by changing the components of Fig.3:
$\mathrm{C}_{2}=97 \mathrm{pF}, \mathrm{C}_{5}=102 \mathrm{pF}, \mathrm{L}_{2}=17.6 \mathrm{nH}, \mathrm{L}_{3}=29 \mathrm{nH}$ and $\mathrm{R}_{1}=12 \Omega$.
The remaining part of the transformation from 12.5Ω to the 50Ω system impedance has been accomplished with a transformer similar to the output transformer. However the input transformer has been wound on a core consisting of 2 small toroids of 4C6 material ($6 \times 4 \times 2 \mathrm{~mm}$).

A wideband power amplifier ($25-110 \mathrm{MHz}$) with the MOS transistor BLF245

 NCO8602On this core 6 turns of two 0.25 mm twisted enamelled Cu-wires are uniformly distributed similar to the output transformer described in Section 3.2. (see Fig.1). With correction capacitors at the high ohmic and the low ohmic side of respectively 8.2 and 47 pF the return losses in the range $20-140 \mathrm{MHz}$ are better than -27 dB (VSWR ≤ 1.1).

For the practical optimization of the complete inputcircuit the transistor has been adjusted at $\mathrm{V}_{\mathrm{D}}=28 \mathrm{~V}$ and a quiescent current $\mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}$. The gain and input return losses have been measured in the frequency range of 20 up to 110 MHz .
The best results have been achieved by changing the correction capacitor C_{3} from 47 to 62 pF and by executing R_{1} as a parallel connection of 5 resistors of 61.9Ω.

Figure 8 gives the complete circuit diagram of the BLF245 wideband amplifier and Table 3 gives the corresponding parts list.

4 MEASURED PERFORMANCE

4.1 Constant input power

Figs 9 to 11 give the gain, efficiency and output power versus the frequency at a constant input power ($\mathrm{P}_{\mathrm{i}}=0.5 \mathrm{~W}$). In the frequency range of 25 to 110 MHz the gain is 17.2 to 17.9 dB , the efficiency 55 to 70% and the output power 26.5 to 30.5 W .

4.2 Constant output power

Figs 12 and 13 give the gain and efficiency versus the frequency at a constant power ($\mathrm{P}_{\mathrm{O}}=27.5 \mathrm{~W}$) and heatsink temperatures of 25 and $70^{\circ} \mathrm{C}$.

Figs 14 and 15 give the input return losses and the $2 e$ and $3 e$ harmonics of the output signal also versus the frequency. The return losses have been measured at a heatsink temperature of 25 and $70^{\circ} \mathrm{C}$. The harmonics have been measured at $25^{\circ} \mathrm{C}$. By increasing the heatsink temperature from 25 to $70^{\circ} \mathrm{C}$ the gain decreases about 1.2 dB . The heatsink temperature has no influence on efficiency and return losses. At $25^{\circ} \mathrm{C}$ the gain of the amplifier varies from 17.2 to 18.2 dB , the efficiency from 55 to 67% and the return losses at the input are at least -14 dB (VSWR ≤ 1.6). Also the 2 e and 3 e harmonics are at least 14 dB down.

4.3 Constant frequency

Figs 16 to 18 give the output power versus input power and the gain and efficiency versus power at 4 frequencies.

4.4 Stability

Applying an R\&S PTU low pass filter at the output of the amplifier stability measurements have been carried out. Choosing a low pass frequency as close as possible above the measuring frequency the amplifier was stable through the whole frequency range of 25 to 110 MHz .

4.5 Mismatch

The amplifier has been tested for load mismatch at all phase angles. Up to VSWR = 10:1 the amplifier is stable. At VSWR = $20: 1$ the amplifier is only stable below 70 MHz . However also at higher frequencies degradation of the RF performance did not occur.

5 CONCLUSIONS

Based on the results presented in this report it may be concluded that it is quite possible to design a wideband amplifier from 25 to 110 MHz with a very good performance using the MOS transistor BLF 245.

A wideband power amplifier ($25-110 \mathrm{MHz}$)

Table 2 The main properties are:

		UNIT
Bandwidth	$25-110$	MHz
V_{D}	28	V
I_{DQ}	200	mA
Gain $\left(\mathrm{P}_{\mathrm{O}}=27.5 \mathrm{~W}\right)$	17.7 ± 0.5	dB
Efficiency	$55-67$	$\%$
Input VSWR	≤ 1.6	

6 REFERENCES

Ref. 1.
A.H. Hilbers

Application report ECO6907: Design of HF wideband Power Transformers.
Ref.2.
A.H. Hilbers

Application report ECO7703: Power Transformers for the Frequency Range $30-80 \mathrm{MHz}$

Fig. 4 Return losses output circuit.

A wideband power amplifier ($25-110 \mathrm{MHz}$)

Fig. 5 Real part of input impedance of loaded transistor.

Fig. 6 Imaginary part of input impedance of loaded transistor.

Fig. 7 Gain of loaded transistor.

A wideband power amplifier ($25-110 \mathrm{MHz}$)

Fig. 8 Circuit diagram of the BLF245 wideband amplifier.

A wideband power amplifier ($25-110 \mathrm{MHz}$)

Table 3 Parts list of the BLF245 wideband amplifier

WIDEBAND POWER AMPLIFIER WITH BLF245 (f = 25 - $\mathbf{1 1 0} \mathbf{M H z}$)	
$\mathrm{C} 1=8.2 \mathrm{pF}$ multilayer ceramic chip capacitor; note 1	
$\mathrm{C} 2-\mathrm{C} 5=100 \mathrm{pF}$ multilayer ceramic chip capacitor; note 1	
$\mathrm{C} 3=62 \mathrm{pF}$ multilayer ceramic chip capacitor; note 1	
$\mathrm{C} 4=\mathrm{C} 10=10 \mathrm{nF}$ multilayer ceramic chip capacitor	cat. no. 222285247103
$\mathrm{C} 6=\mathrm{C} 7=100 \mathrm{nF}$ multilayer ceramic chip capacitor	cat. no. 222285247104
$\mathrm{C} 8=2.2 \mathrm{uF}$ electrolytic capacitor	
$\mathrm{C} 9=3 \times 100 \mathrm{nF}$ multilayer ceramic chip capacitor	cat. no. 222285247104
C11 $=82 \mathrm{pF}$ multilayer ceramic chip capacitor; note 1	
$\mathrm{C} 12=43 \mathrm{pF}$ multilayer ceramic chip capacitor; note 1	
C13 $=12 \mathrm{pF}$ multilayer ceramic chip capacitor; note 1	
L1 $=2$ Ferroxcube toroids, grade $4 \mathrm{C} 6(6 \times 4 \times 2 \mathrm{~mm})$ with 6 turns of $2 \times 0.25 \mathrm{~mm}$ twisted enamelled Cu-wire (see Fig.1)	cat. no. 432202097160
$\mathrm{L} 2=17.6 \mathrm{nH}$, 2 turns enamelled Cu-wire (0.6 mm) int.dia.: 3 mm , length 2.5 mm , leads $2 \times 5 \mathrm{~mm}$	
L3 $=28.8 \mathrm{nH}$, 3 turns enamelled Cu-wire ($0,6 \mathrm{~mm}$) int.dia.: 3 mm , length 3.2 mm , leads $2 \times 5 \mathrm{~mm}$	
$\mathrm{L} 4=455 \mathrm{nH}$, 12 turns enamelled Cu-wire (1 mm) int.dia.: 7 mm , length 16.5 mm , leads $2 \times 5 \mathrm{~mm}$	
L5 = Ferroxcube h.f.choke, grade 3B	cat. no. 431202036642
L6 = 10 nH , 1 turn enamelled Cu-wire (1 mm) int.dia.: 3 mm leads $2 \times 3 \mathrm{~mm}$	
L7 = Ferroxcube toroid, grade 4C6 ($23 \times 14 \times 7 \mathrm{~mm}$) with 5 turns of $2 \times 0.7 \mathrm{~mm}$ twisted enamelled Cu-wire (see Fig.1)	cat. no. 432202097190
R1 $=12.4 \Omega$, parallel connection of 5 metal film resistors 61.9Ω	cat. no. 232215176199
$\mathrm{R} 2=1 \mathrm{~K} \Omega$, metal film resistor	cat. no. 232215171002
R3 $=1 \mathrm{M} \Omega$, metal film resistor	cat. no. 232215171005
R4 $=10 \Omega$, metal film resistor	cat. no. 232215351009
Printed-circuit board: double Cu-clad, 1.6 mm epoxy fibre-glass $\left(\varepsilon_{r}=4.5\right)$	

Note

1. American Technical Ceramics type 100B or capacitor of same quality.

A wideband power amplifier ($25-110 \mathrm{MHz}$)
Application Note with the MOS transistor BLF245 NCO8602

Fig. 9 Gain at $P_{i}=0.5 \mathrm{~W}$.

Fig. 11 Output power at $\mathrm{P}_{\mathrm{i}}=0.5 \mathrm{~W}$.

A wideband power amplifier ($25-110 \mathrm{MHz}$)

Fig. 15 Output harmonics at $\mathrm{P}_{\mathrm{O}}=27.5 \mathrm{~W}$.

A wideband power amplifier ($25-110 \mathrm{MHz}$) with the MOS transistor
 Application Note NCO8602

Fig. 17 Gain versus output power.

Fig. 18 Efficiency versus output power.

A wideband power amplifier ($25-110 \mathrm{MHz}$)

7 APPENDIX

The output capacitance of a transistor can be compensated over a certain bandwidth by absorbing it in a low-pass Chebyshew π-section.

Fig. 19

If C 1 is the transistor output capacitance the components L and C 2 must be added.
$\mathrm{C} 2=\mathrm{C} 1=\mathrm{C}$
The normalized value of C is: $A=\omega_{m} C R$
In which $\omega_{\mathrm{m}}=2 \pi \mathrm{f}_{\text {max }}$
Now we can calculate the normalized value of L with:
$B=8 A /\left(3 A^{2}+4\right)$
where $B=\omega_{m} L / R$
The maximum VSWR of this network can be calculated with the following procedure.

1. Determine $\gamma=\frac{1}{\mathrm{~A}}$
2. $X=\gamma+\sqrt{\gamma^{2}+1}$
3. $\operatorname{VSWR}=\left\{\frac{x^{3}+1}{x^{3}-1}\right\}^{2}$

In our amplifier:
$R=12.5 \Omega$
$\mathrm{C}=82 \mathrm{pF}$
This gives:
$\mathrm{A}=0.784$
$B=1.029$
$\mathrm{L}=18.62 \mathrm{nH}$
$\gamma=1.412$
X $=3.142$
VSWR $=1.138$

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +38044264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

